
CSCI 210: Computer Architecture

Lecture 9: Logical Operations

Stephen Checkoway

Slides from Cynthia Taylor

1

Announcements

• Problem Set 2 due today

– PS 3 available

• Lab 1 due Sunday

– Lab 2 available later today

CS History: Kathleen Britton

• Applied mathematician and
computer scientist

• Wrote the first assembly
language and assembler in
1947

• Collaborated with Andrew
Booth to develop three early
computers: the ARC (Automatic
Relay Calculator), SEC (Simple
Electronic Computer), and
APE(X)C

• Later worked with neural nets

Representing Instructions

• MIPS instructions

– Encoded as 32-bit instruction words

– Small number of formats encoding operation code (opcode), register numbers, …

– Regularity!

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type

I-type

J-type

• MIPS fields are given names to make them
easier to refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

MIPS Arithmetic Instructions Format

sub $t0, $s1, $s2

t0 = s1 – s2

0 17 18 8 0 0x22
opcode rs rt rd sa funct

R-format Example

add $t0, $s1, $s2

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Convert this MIPS machine instruction to assembly:

000000 01110 10001 10010 00000 100010

Selection Instruction

A add $s2, $t7, $s4

B add $s1, $t6, $s3

C sub $t6, $s1, $s2

D sub $s2, $t6, $s1

E None of the above

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

MIPS I-format Instructions

• Immediate arithmetic and load/store instructions

– rt: destination or source register number

– Constant: –215 to +215 – 1 (or 0 to 216 – 1 for some instructions)

– offset: offset added to base address in rs

op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

• Load/Store Instruction Format:

 lw $t0, 24($s3)

Machine Language – I Format
op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

Machine Language – I Format
op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

• Immediate Addition Instruction Format:

 addi $t0, $s3, 26

12

Convert this MIPS assembly instruction to
machine code

sw $t0, 32($s6)

Selection Instruction

A 010101 11011 00100 0000 0000 0010 0000

B 101011 01000 10110 0000 0000 0010 0000

C 101011 10110 01000 0000 0000 0010 0000

D 000000 00010 00000 1010 1110 1100 1000

E None of the above

Sign-extend vs. zero-extend

• The immediate field of an I-format instruction is either sign-
extended or zero-extended

– sign extension: the sign bit (bit 15) is copied into bits 31–16

– zero extension: 0 is placed into bits 31–16

• Opcode determines
which occurs

op rs rt immediate

6 bits 5 bits 5 bits 16 bits

Questions about Machine Instructions?

Logical Operations

• Instructions for bitwise manipulation

• Useful for extracting and inserting groups of bits in a word

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

Shift Operations

• shamt: how many positions to shift

• Shift left logical

– Shift left and fill with 0 bits

– sll by n bits multiplies by 2n

• Shift right logical

– Shift right and fill with 0 bits

– srl by n bits divides by 2n (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

MIPS shift instructions

sll $t0, $s1, 2

t0 = s1 << 2

0 0 17 8 2 0x0
opcode rs rt rd sa funct

Shift left logical

• 0110 1001 << 2 in 8 bits

– Most significant 2 bits are dropped

– 2 0s are added to become the least significant bits

– Result: 01 1010 0100 => 1010 0100

Shift right logical

• 1010 1001 >>> 3 in 8 bits

– Least significant 3 bits are dropped

– 3 0s are added to become the most significant bits

– Result: 0001 0101 001 => 0001 0101

Shift right arithmetic

• sra rd, rt, shamt

– Shift right and copy the sign bit

• 1010 1001 >> 3 in 8 bits

– Least significant 3 bits are dropped

– 3 1s are added because the MSB is 1 to become the most significant
bits

– Result: 1111 0101 001 => 1111 0101

A new op HEXSHIFTRIGHT shifts hex numbers right
by a digit. HEXSHIFTRIGHT i times is equivalent to

A. Dividing by i

B. Dividing by 2i

C. Dividing by 16i

D. Multiplying by 16i

Remember Boolean Operations?

• and, or, not . . .

• Now we’ll apply them to bits!

• Just think of 1 as True, and 0 as False

And Truth Table

0 1

0 0 0

1 0 1

AND Operations
• Useful to mask bits in a word

– Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

AND identities (for a single bit)

• x & 0 =

• x & 1 =

01101001 & 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

If we want to zero out bits* 3 – 0 in a byte we
should AND with

A. 00000000

B. 00001111

C. 11110000

D. 11111111

*MSB is on the left, rightmost bit is 0

Or Truth Table

0 1

0 0 1

1 1 1

OR Operations
• Useful to set bits in a word

– Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

OR Identities (for a single bit)

• x | 0 =

• x | 1 =

01101001 | 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

Reading

• Next lecture: Branching instructions

– Read Section 2.8

• Problem Set 2 due today

• Lab 1 due on Monday

	Slide 1: CSCI 210: Computer Architecture Lecture 9: Logical Operations
	Slide 2: Announcements
	Slide 3: CS History: Kathleen Britton
	Slide 4: Representing Instructions
	Slide 5: MIPS Instruction Fields
	Slide 6: MIPS Arithmetic Instructions Format
	Slide 7: R-format Example
	Slide 8
	Slide 9: MIPS I-format Instructions
	Slide 10: Machine Language – I Format
	Slide 11: Machine Language – I Format
	Slide 12
	Slide 13: Sign-extend vs. zero-extend
	Slide 14: Questions about Machine Instructions?
	Slide 15: Logical Operations
	Slide 16: Shift Operations
	Slide 17: MIPS shift instructions
	Slide 18: Shift left logical
	Slide 19: Shift right logical
	Slide 20: Shift right arithmetic
	Slide 21: A new op HEXSHIFTRIGHT shifts hex numbers right by a digit. HEXSHIFTRIGHT i times is equivalent to
	Slide 22: Remember Boolean Operations?
	Slide 23: And Truth Table
	Slide 24: AND Operations
	Slide 25: AND identities (for a single bit)
	Slide 26: 01101001 & 11000111
	Slide 27: If we want to zero out bits* 3 – 0 in a byte we should AND with
	Slide 28: Or Truth Table
	Slide 29: OR Operations
	Slide 30: OR Identities (for a single bit)
	Slide 31: 01101001 | 11000111
	Slide 46: Reading

